Y-Calculus: A language for real Matrices derived from the ZX-Calculus

نویسندگان

  • Emmanuel Jeandel
  • Simon Perdrix
  • Renaud Vilmart
چکیده

The ZX-Calculus is a powerful diagrammatic language devoted to represent complex quantum evolutions. But the advantages of quantum computing still exist when working with rebits, and evolutions with real coefficients. Some models explicitly use rebits, but the ZX-Calculus can not handle these evolutions as it is. Hence, we define an alternative language solely dealing with real matrices, with a new set of rules. We show that three of its non-trivial rules are not derivable from the others and we prove that the language is complete for the π 2 -fragment. We define a generalisation of the Hadamard node, and exhibit two interpretations from and to the ZX-Calculus, showing the consistency between the two languages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics

We introduce the first complete and approximatively universal diagrammatic language for quantum mechanics. We make the ZX-Calculus, a diagrammatic language introduced by Coecke and Duncan, complete for the so-called Clifford+T quantum mechanics by adding four new axioms to the language. The completeness of the ZX-Calculus for Clifford+T quantum mechanics was one of the main open questions in ca...

متن کامل

The ZX-calculus is complete for stabilizer quantum mechanics

The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics (QM), meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matr...

متن کامل

Making the stabilizer ZX-calculus complete for scalars

The ZX-calculus is a graphical language for quantum processes with built-in rewrite rules. The rewrite rules allow equalities to be derived entirely graphically, leading to the question of completeness: can any equality that is derivable using matrices also be derived graphically? The ZX-calculus is known to be complete for scalar-free pure qubit stabilizer quantum mechanics, meaning any equali...

متن کامل

Pivoting makes the ZX-calculus complete for real stabilizers

We show that pivoting property of graph states cannot be derived from the axioms of the ZX-calculus, and that pivoting does not imply local complementation of graph states. Therefore the ZX-calculus augmented with pivoting is strictly weaker than the calculus augmented with the Euler decomposition of the Hadamard gate. We derive an angle-free version of the ZX-calculus and show that it is compl...

متن کامل

The ZX Calculus is incomplete for Clifford+T quantum mechanics

The ZX calculus is a diagrammatic language for quantum mechanics and quantum information processing. We prove that the ZX-calculus is not complete for the Clifford+T quantum mechanics. The completeness for this fragment has been stated as one of the main current open problems in categorical quantum mechanics [8]. The ZX calculus was known to be incomplete for quantum mechanics [7], on the other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.00934  شماره 

صفحات  -

تاریخ انتشار 2017